Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pemphigus vulgaris (PV) is a blistering autoimmune disease that affects the skin and mucous membranes. The mechanisms by which PV antibodies induce loss of cohesion in keratinocytes are not fully understood. It is accepted that the process starts with antibody binding to desmosomal targets, which leads to its disassembly and subsequent structural changes to cell–cell adhesions. In vitro imaging of desmosome molecules has been used to characterize this initial phase. However, there remains an untapped potential of image analysis in providing us with more in-depth knowledge regarding biophysical changes after antibody binding. Currently, there is no quantitative framework from immunofluorescence images in PV pathology. Here, we seek to establish a correlation of biophysical changes with antibody pathogenicity by examining the effects of PV antibodies on adhesion molecules and the cytoskeletal network. Specifically, we introduced a data-driven approach to quantitatively evaluate perturbations in adhesion molecules following antibody treatment. We identify distinct imaging signatures that mark the impact of antibody binding on the remodeling of adhesion molecules and introduce a pathogenicity score to compare the relative effects of different antibodies. From this analysis, we showed that the biophysical response of keratinocytes to distinct PV antibodies is highly specific, allowing for accurate prediction of their pathogenicity. For instance, the high pathogenicity scores of the PVIgG and AK23 antibodies show strong agreement with their reported PV pathology. Our data-driven approach offers a detailed framework for the action of antibodies in pemphigus and paves the way for the development of effective diagnostic and therapeutic strategies.more » « less
-
Free, publicly-accessible full text available July 9, 2026
-
Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.more » « less
-
A current challenge in 3D bioprinting of skin equivalents is to recreate the distinct basal and suprabasal layers and promote their direct interactions. Such a structural arrangement is essential to establish 3D stratified epidermis disease models, such as for the autoimmune skin disease pemphigus vulgaris (PV), which targets the cell–cell junctions at the interface of the basal and suprabasal layers. Inspired by epithelial regeneration in wound healing, a method that combines 3D bioprinting and spatially guided self‐reorganization of keratinocytes is developed to recapture the fine structural hierarchy that lies in the deep layers of the epidermis. Herein, keratinocyte‐laden fibrin hydrogels are bioprinted to create geographical cues, guiding dynamic self‐reorganization of cells through collective migration, keratinocyte differentiation, and vertical expansion. This process results in a region of self‐organized multilayers (SOMs) that contain the basal‐to‐suprabasal transition, marked by the expressed levels of different types of keratins that indicate differentiation. Finally, the reconstructed skin tissue as an in vitro platform to study the pathogenic effects of PV is demonstrated, illuminating a significant difference in cell–cell junction dissociation induced by PV antibodies in different epidermis layers, which indicates their applications in the preclinical test of possible therapies.more » « less
-
Abstract It is becoming increasingly clear that mechanical stress in adhesive junctions plays a significant role in dictating the fate of cell–cell attachment under physiological conditions. Targeted disruption of cell–cell junctions leads to multiple pathological conditions, among them the life‐threatening autoimmune blistering disease pemphigus vulgaris (PV). The dissociation of cell–cell junctions by autoantibodies is the hallmark of PV, however, the detailed mechanisms that result in tissue destruction remain unclear. Thus far, research and therapy in PV have focused primarily on immune mechanisms upstream of autoantibody binding, while the biophysical aspects of the cell–cell dissociation process leading to acantholysis are less well studied. In work aimed at illuminating the cellular consequences of autoantibody attachment, it is reported that externally applied mechanical stress mitigates antibody‐induced monolayer fragmentation and inhibits p38 MAPK phosphorylation activated by anti‐Dsg3 antibody. Further, it is demonstrated that mechanical stress applied externally to cell monolayers enhances cell contractility via RhoA activation and promotes the strengthening of cortical actin, which ultimately mitigates antibody‐induced cell–cell dissociation. The study elevates understanding of the mechanism of acantholysis in PV and shifts the paradigm of PV disease development from a focus solely on immune pathways to highlight the key role of physical transformations at the target cell.more » « less
-
Significance Cell–cell junctions are essential components in multicellular structures and often experience strains of different magnitudes and rates. However, their mechanical behavior is currently underexplored due to the lack of techniques to quantitatively characterize junctional stress–strain relationships. We developed a polymeric microstructure to strain the mutual junction of a single cell pair while simultaneously recording the junction stress and observed previously unseen strain-rate–dependent junction responses. We showed that cytoskeleton growth could relax the stress buildup and prevent junction failure at low strain rates, while high strain rates led to synchronized junction failures at remarkably large strains (over 200%). We expect this platform and our biophysical understanding to form the foundation for the rate-dependent mechanics of cell–cell junctions.more » « less
An official website of the United States government

Full Text Available